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SUMMARY 

The aim of this study was to evaluate the reliability of estimating the breed composition of an 
admixed population using simulated data. Comprehending breed composition will help to discern 
the animal's ancestry and to define breed groups in genetic evaluation. The simulation was 
performed in two steps: initially, a historical population was simulated and then a recent population 
comprising two subpopulations was simulated. Haplotypes of these subpopulations were coded 
differently and selected randomly and independently for 5 generations, followed by a cross between 
them in generation 6, with further inter-crossing for the last 4 generations. True breed composition 
(TBC) was calculated from coded haplotypes for the crossbred population and later compared with 
results obtained from Admixture and BreedComp algorithms. BreedComp provided more accurate 
breed composition estimates than Admixture in this study. These findings suggest that the approach 
can be extrapolated to real data to assign animals into genetic groups to improve the prediction 
accuracy of breeding values. 
 
INTRODUCTION 

Animal breeders strive to select the best animals to genetically improve breeding populations 
(Niehoff et al. 2024). Due to selection and admixture, many populations are heterogeneous, which 
needs to be accounted for in genetic evaluations. It is thereby important to identify genetic groups 
to account for the genetic variation in admixed populations. Genetic groups or unknown parent 
groups (UPGs) can be assigned to animals of unknown parentage to account for differences in 
genetic merit (Westell et al. 1988). Different methods have been implemented to define genetic 
groups, based on birth year, region or flocks of origin, or generation from pedigree records. 
However, this approach is problematic when the pedigree is incomplete (Masuda et al. 2022). With 
the advent of genomic data, a potentially powerful alternative method for breed of origin is available 
(Eiriksson et al. 2022), but little is known about the accuracy of using genomic data to define genetic 
groups for admixed populations. 

Since genomic data became available, modified versions of best linear unbiased prediction 
(BLUP) such as genomic BLUP (GBLUP) and single-step GBLUP have been used to improve the 
estimation of breeding value (Legarra et al. 2009). Previous studies have reported that the 
complexity of the relationship matrix increased with the integration of pedigree and genomic data. 
Due to different base populations being used for the numerator relationship matrix (A) and genomic 
relationship matrix (G), incompatibility between pedigree and genomic data produced biased 
estimates of breeding value (Masuda et al. 2022). A generalised UPG, also known as the 
metafounders (MF) model, was developed to ensure the compatibility between pedigree and 
genomic relationships by adjusting A to match G, balancing and accounting for relationships 
between and within base populations of A and G (Legarra et al. 2015; Himmelbauer et al. 2024). 
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However, incomplete pedigree in real data makes it difficult to properly define MF, as an accurate 
definition of relationships is needed. In this context, accurate estimation of breed composition based 
on genotype data could enhance the definition of genetic groups in admixed populations and improve 
compatibility with pedigree data. 

Gurman et al. (2017) compared the estimates of clustering approaches such as Admixture 
(Alexander et al. 2009) and BreedComp (Boerner and Wittenburg 2018) with the breed composition 
estimated using pedigree data of Australian sheep breeds in which BreedComp provided slightly 
better estimates than Admixture. Similarly, findings by Boerner and Wittenburg (2018) highlighted 
that BreedComp performed better in crossbred animals artificially generated from real genotyped 
data of 11 different cattle breeds. However, pedigree-based breed assignment can be inaccurate due 
to missing pedigree records, affecting its comparison with genomic-based breed assignment 
methods. 

Simulation studies can be used to determine the accuracy of these methods to estimate breed 
composition using genomic data, as tracing the alleles passed to subsequent generations using 
haplotype information can aid in determining the accurate breed contribution from either parent. 
Although simulation studies have been used to determine breed composition with clustering 
algorithms (Himmelbauer et al. 2024), the accuracy of the clustering methods using genomic data 
to evaluate its efficiency is largely unexplored. 

Hence, this study used simulated data to assess the reliability of estimating breed composition 
based on genomic information to infer the parental contribution to each animal in an admixed 
population. 

 
MATERIALS AND METHODS 

Simulation overview. A historical sheep population was simulated using QMSim (Sargolzaei 
and Schenkel 2009). The genome consisted of 26 chromosomes with 49,400 SNPs, a mutation rate 
of 2.5 x 10-5, an effective population size (Ne) of 100, and a crossover interference of 25cM. A total 
of 2000 animals were simulated descending from 20 sires and 1000 dams.  

The historical population was divided into populations A and B using custom code in R. To track 
back the ancestral populations, alleles in haplotypes were recoded as -1 and 1 for population A, and 
-2 and 2 for population B, respectively. All 1,000 dams in both populations were selected along with 
54 males in population A and 26 males in population B to create a difference in effective population 
size between these two populations. A recombination function was added to the population using 
the hsphase R package (Ferdosi et al. 2014). Mating within populations A and B was conducted 
randomly and independently for 5 generations. 

In generation 6, 26 sires from population B were mated with 1000 dams from population A. The 
resulting cross population was used to simulate four more generations of inter-crosses, using 54 sires 
and 1,000 dams from generations 7 to 10. 

From animals in generation 5 to 10 (n = 1000 per generation), the haplotypes were recoded (0, 
1) format and converted to genotypes to estimate the breed composition using supervised Admixture 
(K = 2) (Alexander et al. 2009) and BreedComp (Boerner 2017) analysis. The true breed 
composition (TBC) was measured based on counts of alleles at each locus coded according to the 
breed of origin. The accuracy of the estimates was calculated as the difference between TBC with 
estimates obtained from Admixture and BreedComp for the crossbred generations 6 to 10, and these 
differences were plotted using Python v3.11 (Python Software Foundation 2023). Population 
parameters, such as average inbreeding coefficient and effective population size for crossbred 
population, were calculated using --het in Plink (Purcell et al. 2007) and SNeP software (Barbato et 
al. 2015), respectively. 
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RESULTS AND DISCUSSION 
Effective population size and inbreeding coefficients. Inbreeding coefficients (F) and effective 

population size (Ne) were estimated for generations 5 to 10 (Table 1). Ne for population A at 
generation 5 (264) is higher than that of population B (167) because of fewer sires being used in 
population B, which also explains the higher F-value in population B. In generation 6, there was an 
increase in Ne as a result of the cross between populations A and B, which were mated randomly 
for 5 generations. As F-value was calculated using observed and expected homozygotes, a negative 
estimate of F explained the increase in the level of heterozygosity (Purcell et al. 2007) as observed 
in generation 6. From generation 7 to 10, Ne declined in the crossbred population as it followed inter 
se mating within the population leading to an increase in inbreeding coefficients.  
 
Table 1. Estimation of inbreeding coefficient (F) and effective population size (Ne) from 
generation 5 to 10 
 

Generation 5 
(PopA) 

5 (PopB) 6 7 8 9 10 

F 0.0084 0.0234 -0.024 0.0007 0.0015 0.0085 0.0116 

Ne 264 167 338 329 310 308 292 

 
Breed composition estimates. Density plot depicts the distribution for the difference between 

TBC and estimates from Admixture and BreedComp (Figure 1). BreedComp exhibited a lower 
sigma value (σ = 0.08) than Admixture (σ = 0.13) revealing that the difference between TBC and 
estimates of BreedComp were closer to zero as compared to Admixture results, indicating slightly 
more accurate estimates. Similar findings were reported by (Gurman et al. 2017; Boerner and 
Wittenburg 2018) for Australian sheep and cattle breeds respectively, where BreedComp was able 
to perform better than Admixture. 

Figure 1. Density Plot illustrating the difference of TBC with estimates of Admixture and 
BreedComp for crossbred population 
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As Ne estimates were calculated on the basis of linkage disequilibrium (LD) (Barbato et al. 
2015), a decrease in Ne estimates from generation 7 to 10 (Table 1) reflects a high level of LD in 
the crossbred population. Neither Admixture nor BreedComp algorithms account for LD. However, 
BreedComp relaxes marker independence by accounting for linear dependencies between markers, 
possibly explaining why BreedComp could provide better estimates of breed composition compared 
to Admixture results (Boerner and Wittenburg 2018).  

The BreedComp algorithm can determine breed composition, enabling proper grouping of 
animals based on genomic data. Reliable breed composition estimates will help in clustering similar 
animals into MFs, which can be achieved by defining them based on genotype data. This approach 
helps overcome the limitation of missing and inaccurate pedigree records. Further research will be 
needed to investigate applying this method to estimate the breed composition of real animals based 
on genomic data to assign animals properly into MFs to test if this improves the accuracy of the 
prediction of breeding value which will enhance the overall productivity of the farm. 
 
CONCLUSIONS 

This study provided insights into the use of Admixture and BreedComp algorithms to estimate 
reliability for evaluating breed composition in admixed sheep populations using genomic 
information. BreedComp provided more accurate estimates of breed composition than Admixture in 
this study. The application of algorithms like BreedComp will help in precise assignment of animals 
to define metafounders based on genomic data, thereby improving the accuracy of breeding value 
in genetic evaluation.  
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